Plasma Technology for Health

Technologie | Studien

Nachweislich wirksam –
in jeder Hinsicht

Studien zum Thema

Förderung der Mikrozirkulation

Borchardt, Thomas; Ernst, Jennifer; Helmke, Andreas; Tanyeli, Murat; Schilling, Arndt F.; Felmerer, Gunther; Vioel, Wolfgang (2017): Effect of direct cold atmospheric plasma (diCAP) on microcirculation of intact skin in a controlled mechanical environment. In: Microcirculation (New York, N.Y. : 1994) 24 (8). DOI: 10.1111/micc.12399.

"diCAP treatment of intact skin notably enhances microcirculation for a therapeutically relevant period. This effect is specific to the plasma treatment and not an effect of the applied pressure. Prolonged treatment durations lead to more pronounced effects."

Kisch, Tobias; Helmke, Andreas; Schleusser, Sophie; Song, Jungin; Liodaki, Eirini; Stang, Felix Hagen et al. (2016a): Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): Results of a controlled, prospective cohort study. In: Microvascular research 104, S. 55–62. DOI: 10.1016/j.mvr.2015.12.002.

" CAP increases cutaneous tissue oxygen saturation and capillary blood flow at the radial forearm of healthy volunteers. These results support recently published data on wound healing after CAP treatment. However, further studies are needed to determine if this treatment can improve the reduced microcirculation in diabetic foot ulcers. Moreover, repetitive application protocols have to be compared with a single session treatment approach."

Kisch, Tobias; Schleusser, Sophie; Helmke, Andreas; Mauss, Karl Ludwig; Wenzel, Eike Tilman; Hasemann, Benedikt et al. (2016b): The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. In: Microvascular research 106, S. 8–13. DOI: 10.1016/j.mvr.2016.02.008.

"These data indicate that the repetitive use of non-thermal atmospheric plasma boosts and prolongs cutaneous microcirculation and might therefore be a potential tool to promote wound healing."